If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-25t=0
a = 1; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·1·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*1}=\frac{50}{2} =25 $
| 5^-x=5^2 | | 9+30=12x | | 9^-r+2=81 | | 5^2-2n=125 | | 1100=600(2x) | | 169=2x^2+49 | | 8(2^-v)=1 | | 4^-a=64 | | 7(3x+7)=7(-8x-4) | | 7*t=35 | | 72/v=12 | | 3x(x-1)(x-2)(x-3)=0 | | 2(f/5)=20 | | 15=7+v/2 | | 6^x(6^2)=1/216 | | 28-6u=u | | (x+5)/4=8 | | 6^-3a-1(6^3a)=6^2a | | 6v=3v+24 | | 8/p=5/13 | | x+261=500 | | 2^k+2(2^2k-1)=2^-k | | x=7(x+5)-2x-15 | | k/3=5/4 | | (7-i)(4+2i)=30+10i | | x=2x-10+3(2x-10)-2(x-5) | | 0=12+3(m-5 | | x/3+6=2 | | 36^-3n=216^2-3n | | 3(x+3)+30=x+40 | | X+3(x-2)=2x-2 | | 7y^2+16y-48=0 |